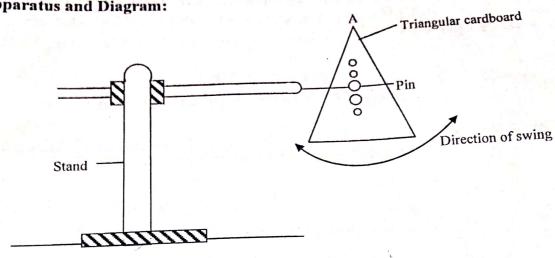
THE UNITED REPUBLIC OF TANZANIA DIPLOMAINSECONDARNEDUCATIONEXAMINATION

PHYSICS 2A 731/2A

RALTERNATIVE APRACHICAL)


Time: 3 Hours

Thursday, 13th May 2010 am.

- This paper consists of three (3) questions
- Answer all questions.
- Question dumber one carries 40 marks question in inber two and three carries marks each.
 - Mathematical tables and Scientific Calculators (fx 82 991) may be used
 - Cellular phones afe not allowed in the examination room. 2010 tee
- Write your Examination Number on every page of your answer booklet(s). 6.
- The following constants may be used. 7.
 - $\pi = 3.14$,
 - Specific heat capacity of Cooper is 400 J/Kg °C,
 - Specific heat capacity of water is 420 J/Kg °C,
 - Acceleration due to gravity; $g = 10 \text{ m/S}^2$.

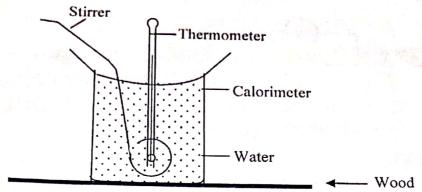
The aim of this experiment is to determine the radius of gyration, K of the triangular short of 1. triangular sheet of cardboard.

Apparatus and Diagram:

Procedures:

- (a) Using the weighted string (plumb line) provided, locate the centre of gravity G of the triangular sheet of cardboard. Explain with the help of diagram how you locate G.
- (b) Draw a line through G and the furthest angle (apex) A of the cardboard. Measure a distance of 2 cm from G along the line GA. Make a hole at this point. Make five other holes along GA, a distance of 2 cm from each other.
- (c) Set up the apparatus as shown above. Suspend the triangular cardboard from a hole nearest the centre of gravity G. Record h which is the distance of the point of suspension from G. With a stopwatch obtain the time t from 10 oscillations of the cardboard and hence determine the period T. Repeat the above procedure with five other values of h to obtain corresponding values of t and T.

Plot a graph of h^2 against T^2h , given that $T^2h = \frac{4\pi^2}{3}(k^2 + h^2)$.

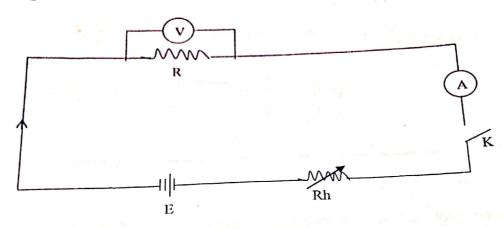

Determine with the aid of your graph

- the acceleration g, due to gravity. (i)
- the radius of gyration, K. (ii)

Mention any source of errors.

2. The aim of this experiment is to determine the rate of cooling of liquid A.

Diagram:


Procedures:

You are provided with a small calorimeter, stirrer, thermometer, beaker and stopwatch.

- (a) Read and record the temperature θ_0 of the room.
- (b) Put some water in a beaker and leave it to heat on the bunsen burner. While the water is being heated, put the colorimeter and stirrer on a wooden base as shown in the diagram above. When the temperature of water in the beaker reaches about 80°C transfer some of it to the calorimeter till the level of water in the calorimeter reaches to above one third from the top of the calorimeter.
- (c) Read and record the temperature 0 °C and start the stopwatch simultaneously so as to enable you record the time (t) seconds, while stirring gently and fanning the calorimeter with some paper.
- (d) Record the temperature after every time interval of 2 minutes. Continue doing this for about 18 minutes.
- (e) Plot a graph of $\log_{10}(\theta \theta_0)$ against time t. Determine the shape of the graph.
- (f) The theory of the experiment obeys relation $\log_{10}(\theta \theta_o)$, where w is the water equivalent of calorimeter and contents; and k is constant. What is the physical meaning of the constant k?

3. The aim of this experiment is to verify the ohms' law.

Diagram:

Procedures:

- (a) Set up the apparatus as shown in the diagram above.
- (b) Close the switch K.
- (c) Adjust the rheostat Rh by sliding slowly from one end.
- (d) Read and record values of voltage V and current I from the voltmeter and ammeter readings respectively.
- (e) Repeat the experiment by changing the position of a slide of a rheostat from five (5) different positions.
- (f) Always adjust the rheostat until the ammeter points are exactly on the division of the meter scale before taking the readings.
- (g) Tabulate results as follows:

Volts (V)	
Current (A)	

- (h) (i) Plot a graph of V against I.
 - (ii) Is the graph linear or curve?
 - (iii) Find the slope(s).
 - (iv) Compare the relationship of voltage (V) and current (I).